Antimicrobial Resistance Patterns of Urinary Escheria Coli at an Australian Tertiary Hospital

Oyebola Fasugba
Australian Catholic University, oyebola.fasugba@acu.edu.au

Brett G. Mitchell
Avondale College of Higher Education, brett.mitchell@avondale.edu.au

George Mnatzaganian
Australian Catholic University, george.mnatzaganian@acu.edu.au

Anne Gardner
Australian Catholic University, anne.gardner@acu.edu.au

Follow this and additional works at: https://research.avondale.edu.au/nh_conferences

Part of the Nursing Commons

Recommended Citation

Five-year antimicrobial resistance patterns of urinary \textit{E. coli} at an Australian tertiary hospital

Oyebola Fasugba1, Anne Gardner1, George Mnatzaganian1, Brett Mitchell1, 2, Anindita Das3

1Faculty of Health Sciences, Australian Catholic University
2Discipline of Nursing and Lifestyle Research Centre, Avondale College
3ACT Pathology, Canberra
Disclosure

• Ms Oyebola Fasugba, Prof Anne Gardner and A/Prof Brett Mitchell are members of ACIPC

• A/Prof Brett Mitchell is Interim Editor-in-Chief Infection, Disease and Health and Prof Anne Gardner is on the Editorial board

• A/Prof Brett Mitchell is a member of the scientific organising committee.

• Dr George Mnatzaganian has no conflicts of interests
Introduction

- >80% of urinary tract infections (UTIs) caused by *Escherichia coli* (*E. coli*) (Nicolle, 2008)
- Community acquired (CA) or hospital acquired (HA) classification
- Standard treatment is antibiotics (Stuck et al., 2012)
- Treatment based on local susceptibility patterns (Teoh et al., 2013)
- Inappropriate treatment leads to emergence of resistant pathogens & recurrence of infection (Trautner, 2010)
Introduction

- Evidence shows urinary *E. coli* is becoming increasingly resistant to common antimicrobials (WHO, 2014)
- Whilst prevalence rates for urinary *E. coli* resistance have been reported in Australia, available data do not adjust for age & sex
- To our knowledge there are no data comparing resistance patterns for CA and HA UTIs
Aims

- To describe the antimicrobial resistance patterns of *E. coli* UTI over five years (2009-2013) in patients at the Canberra Hospital
- Compare the prevalence of resistance in community-acquired and hospital-acquired *E. coli* UTI
Significance

• Expand understanding of antimicrobial resistance in urinary *E. coli* infections in Australia

• Contribute to ongoing surveillance data in the Australian Capital Territory (ACT)

• Potential for study findings to inform treatment decisions for UTI & influence therapy based on site of acquisition
Methods

- Ethics approval granted by ACT Health and ACU HREC
- Cross-sectional design
- Inclusions: Canberra Hospital samples; *E. coli* growth of $\geq 10^7$ cfu/L
- CA UTI: within 48 hours of admission; outpatients
- HA UTI: more than 48 hours after admission or within 48 hours of discharge
Methods

• Only the first positive E. coli culture per patient per year was included in analysis
• Overall 5-year and yearly antimicrobial resistance rates were calculated
• Rates compared between CA and HA UTIs
• Prevalence of Extended Spectrum Beta Lactamase (ESBL) producing E. coli
• Crude and adjusted time series analyses were conducted to assess resistance trends over the 5-year study period
Results

- 5346 positive *E. coli* UTIs belonging to 4744 patients
 - CA UTI ➔ 84.3% (n=4505)
 - HA UTI ➔ 15.7% (n=841)
- Mean age of all patients was 57.0 years (SD=27.6)
- 80.3% (n=3806) of patients were women
- Resistance highest for ampicillin (41.9%) & trimethoprim-sulphamethoxazole (32.7%)
- Resistance lowest for meropenem (0.1%) & gentamicin (4.0%)
<table>
<thead>
<tr>
<th>Antimicrobial</th>
<th>5-year resistance %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampicillin</td>
<td>41.9</td>
</tr>
<tr>
<td>Trimethoprim-sulphamethoxazole</td>
<td>32.7</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>20.7</td>
</tr>
<tr>
<td>Norfloxacin</td>
<td>16.2</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>13.5</td>
</tr>
<tr>
<td>Cephazolin</td>
<td>10.6</td>
</tr>
<tr>
<td>Piperacillin-tazobactam</td>
<td>10.3</td>
</tr>
<tr>
<td>Nalidixic acid</td>
<td>8.4</td>
</tr>
<tr>
<td>Nitrofurantoin</td>
<td>7.8</td>
</tr>
<tr>
<td>Amoxycillin-clavulanic acid</td>
<td>6.7</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>6.5</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>4.0</td>
</tr>
<tr>
<td>Meropenem</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Results

- Significantly higher resistance (P<0.05) in HA compared to CA UTI for:
 - amoxycillin-clavulanate
 - cephazolin
 - gentamicin
 - piperacillin-tazobactam

- ESBL-producing *E. coli* significantly higher (P=0.01) in HA (3.0%; n=25) compared with CA UTI (1.7%; n=75)
Results

1=Summer
2=Autumn
3=Winter
4=Spring

- AMC (P=0.008)
- Ciprofloxacin (P<0.001)
- Nitrofurantoin (P=0.015)
- TMP-SMX (P=0.002)
- Trimethoprim (P<0.001)
Results

- Significant increase in resistance trend noted for all five antimicrobials (P<0.05)
- Seasonal resistance pattern only significant for Trimethoprim (P=0.0056)
- Regression analysis indicated a possible association between ciprofloxacin resistance and trimethoprim-sulphamethoxazole resistance with older age
Discussion

- Resistance rates lower than reported for single site studies in other countries (Ma et al., 2012; Perrin et al. 1999)

- High levels of ampicillin and trimethoprim-sulphamethoxazole resistance question their use as suitable empirical agents in the management of UTI in this population

- Differences in resistance for HA and CA UTI comparable with findings reported previously (Ma et al., 2012)
Discussion

• Presence of ESBL-producing *E. coli* in both HA and CA UTI pose significant public health concern

• Evidence to support findings of increase in resistance over time

• Seasonal trimethoprim resistance should be explored further

• Association between increasing age and antimicrobial resistance consistent with published literature (Blaettler et al. 2009)
Implications and Conclusion

• While resistance rates are lower than other studies, there is need for continuous resistance surveillance in the ACT
• Amoxycillin-clavulanate and nitrofurantoin still effective in this population
• Study findings will help inform UTI treatment guidelines
• Also provide baseline resistance data for future comparison and inform future interventions that can be evaluated
Acknowledgements

- Thanks to supervisors

- Thanks to Prof Peter Collignon (A/Exec Director, ACT Pathology), Ms Angelique Clyde-Smith (Senior Microbiology Scientist) and staff of ACT Pathology

Contact details

Bola Fasugba
Email: Oyebola.Fasugba2@myacu.edu.au