Self-Assembled Nanomaterials Based on Beta (β3) Tetrapeptides

Author Faculty (Discipline)


Document Type


Publication Date


Publication Details

This article was originally published as:

Seoudi, R. S., Hinds, M. G., Wilson, D. J., Adda, C. G., Del Borgo, M...Mechler, A. (2016). Self-assembled nanomaterials based on beta (β3 ) tetrapeptides. Nanotechnology, 27(13), 1-9. doi: 10.1088/0957-4484/27/13/135606

ISSN: 0957-4484


030701 Quantum Chemistry

Reportable Items



β 3-amino acid based polypeptides offer a unique starting material for the design of self-assembled nanostructures such as fibres and hierarchical dendritic assemblies, due to their well-defined helical geometry in which the peptide side chains align at 120° due to the 3.0–3.1 residue pitch of the helix. In a previous work we have described the head-to-tail self-assembly of N-terminal acetylated β 3-peptides into infinite helical nanorods that was achieved by designing a bioinspired supramolecular self-assembly motif. Here we describe the effect of consecutively more polar side chains on the self-assembly characteristics of β 3-tetrapeptides Ac-β 3Ala-β 3Leu-β 3Ile-β 3Ala (Ac-β3[ALIA]), Ac-β3Ser-β 3Leu-β 3Ile-β 3Ala (Ac-β3[SLIA]) and Ac-β 3Lys-β 3Leu-β 3Ile-β 3Glu (Ac-β3[KLIE]). β 3-tetrapeptides complete 1 1/3 turns of the helix: thus in the oligomeric form the side chain positions shift 120° with each added monomer, forming a regular periodic pattern along the nanorod. Dynamic light scattering (DLS) measurements confirmed that these peptides self-assemble even in highly polar solvents such as water and DMSO, while diffusion-ordered NMR spectroscopy revealed the presence of a substantial monomeric population. Temperature dependence of the size distribution in DLS measurements suggests a dynamic equilibrium between monomers and oligomers. Solution casting produced distinct fibrillar deposits after evaporating the solvent. In the case of the apolar Ac-β 3[ALIA] the longitudinal helix morphology gives rise to geometrically defined (~70°) junctions between fibres, forming a mesh that opens up possibilities for applications e.g. in tissue scaffolding. The deposits of polar Ac-β 3[SLIA] and Ac-β 3[KLIE] exhibit fibres in regular parallel alignment over surface areas in the order of 10 μm.


Due to copyright restrictions this article is unavailable for download.

This article may be accessed from the publisher here.

David Wilson is affiliated with Avondale College of Higher Education as a Conjoint Senior Lecturer.

Please refer to publisher version or contact the library.